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We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical
Kauffman networks �with two inputs per node� in the thermodynamic limit. By defining and analyzing a
stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes
scales with the network size N as N2/3, with only N1/3 nonfrozen nodes having two nonfrozen inputs. We also
show the probability distributions for the numbers of these nodes. Using a different stochastic process, we
determine the scaling behavior of the number of relevant nodes. Their mean number increases for large N as
N1/3, and only a finite number of relevant nodes have two relevant inputs. It follows that all relevant compo-
nents apart from a finite number are simple loops and that the mean number and length of attractors increases
faster than any power law with network size.
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I. INTRODUCTION

Random Boolean networks are often used as generic mod-
els for the dynamics of complex systems of interacting enti-
ties, such as social and economic networks, neural networks,
and gene or protein interaction networks �1�. The simplest
and most widely studied of these models was introduced in
1969 by Kauffman �2� as a model for gene regulation. The
system consists of N nodes, each of which receives input
from K randomly chosen other nodes. The network is up-
dated synchronously, the state of a node at time step t being
a Boolean function of the states of the K input nodes at the
previous time step t−1. The Boolean updating functions are
randomly assigned to every node in the network, and to-
gether with the connectivity pattern they define the realiza-
tion of the network. For any initial condition, the network
eventually settles on a periodic attractor. Of special interest
are critical networks, which lie at the boundary between a
frozen phase and a chaotic phase �3,4�. In the frozen phase, a
change of the state of one node propagates during one time
step on an average to less than one node and the attractor
lengths remain finite in the limit N→�. In the chaotic phase,
the difference between two almost identical states increases
exponentially fast, because a perturbation propagates on an
average to more than one node during one time step �5�.

The nodes of a critical network can be classified accord-
ing to their dynamics on an attractor. First, there are nodes
that are frozen on the same value on every attractor. Such
nodes give a constant input to other nodes and are otherwise
irrelevant. They form the frozen core of the network. Second,
there are nodes whose outputs go only to irrelevant nodes.
Though they may fluctuate, they are also classified as irrel-
evant since they act only as slaves to the nodes determining
the attractor period. Third, the relevant nodes are the nodes
whose state is not constant and that control at least one rel-
evant node. These nodes determine completely the number
and period of attractors. If only these nodes and the links
between them are considered, these nodes form loops with
possibly additional links and chains of relevant nodes within
and between loops. The recognition of the relevant elements
as the only elements influencing the asymptotic dynamics

was an important step in understanding the attractors of
Kauffman networks. The behavior of the frozen core was
first studied by Flyvbjerg �6�. Then, in an analytical study of
K=1 networks Flyvbjerg and Kjaer �7� introduced the con-
cept of relevant elements. This concept was generalized to
general critical networks by Bastolla and Parisi �8,9�. They
gained insight into the properties of the attractors of the criti-
cal networks by using numerical experiments based on the
modular structure of the relevant elements. Finally, Socolar
and Kauffman �10� found numerically that for critical K=2
networks the mean number of nonfrozen nodes scales as N2/3

and the mean number of relevant nodes scales as N1/3. The
same result is hidden in the analytical work on attractor num-
bers by Samuelsson and Troein �11�, as was shown in �12�.

In this work, we go a step further by deriving these power
laws analytically for a more general class of networks and by
showing the asymptotic probability distribution of nonfrozen
and relevant nodes in terms of scaling variables. We also
obtain results for the number of nonfrozen nodes with two
nonfrozen inputs and for the number of relevant nodes with
two relevant inputs. The outline of this paper is the follow-
ing. In the next section we define the class of networks that
we are investigating. In Sec. III, we introduce a stochastic
process that determines the frozen core of the network start-
ing from the nodes whose outputs are entirely independent of
their inputs. Then, in Sec. IV, we analyze the Langevin and
Fokker-Planck equations that correspond to this stochastic
process and that lead to the scaling behavior of the number
of nonfrozen nodes. In order to identify the relevant nodes
among the nonfrozen ones, we introduce in Sec. V another
stochastic process. This process also enables us to find their
scaling behavior. Finally, we discuss in the last section the
implications of our results.

II. CRITICAL K=2 NETWORKS

The networks we are studying in this paper are the K=2
critical networks. In these networks each node has 2 ran-
domly chosen inputs. The 16 possible update functions are
shown in Table I.
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The update functions fall into four classes �5�. In the first
class, denoted by F, are the frozen functions, where the out-
put is fixed irrespectively of the input. The class C1 contains
those functions that depend only on one of the two inputs,
but not on the other one. The class C2 contains the remaining
canalizing functions, where one state of each input fixes the
output. The class R contains the two reversible update func-
tions, where the output is changed whenever one of the in-
puts is changed. Critical networks are those where a change
in one node propagates to one other node on an average. A
change propagates with probability 1 /2 to a node that has a
canalizing update function C1 or C2, with probability zero to
a node that has a frozen update function and with probability
1 to a node that has a reversible update function. Conse-
quently, if the frozen and reversible update functions are cho-
sen with equal probability, the network is critical. Usually,
only those models are considered where all 16 update func-
tions receive equal weight. We here consider the larger set of
models where the frozen and reversible update functions are
chosen with equal �and nonzero� probability and where the
remaining probability is divided between the C1 and C2 func-
tions. Those networks that contain only C1 functions are dif-
ferent from the remaining ones. Since all nodes respond only
to one input, the link to the second input can be cut, and we
are left with a critical K=1 network, which was already dis-
cussed in �7,12,13� and will not be discussed here. All the
other models, where the weight of the C1 functions is smaller
than 1, fall into the same class �12�. The treatment presented
in the following is based on the existence of nodes with
frozen functions, and it therefore applies to all critical mod-
els with a nonzero fraction of frozen functions. Networks
with only canalyzing functions have to be discussed sepa-
rately.

Let Nf be the number of nodes with a frozen function, Nr
the number of nodes with a reversible function, and Nc1

and
Nc2

the number of nodes with a C1 and a C2 function. We
define the systems we are going to consider through param-
eters �=Nc1

/N, �=Nr /N=Nf /N, and �=Nc2
/N. These pa-

rameters give the fraction of each type of nodes in the net-
work. In the next two sections, we determine the properties
of the frozen core in the large-N limit by starting from the
nodes with a frozen function.

III. A STOCHASTIC PROCESS THAT LEADS TO THE
FROZEN CORE

Flyvbjerg �6� was the first one to use a dynamical process
that starts from the nodes with frozen update functions and

determines iteratively the frozen core. Performing a mean-
field calculation for this process, he could identify the critical
point. We define in the following a process that goes beyond
mean-field theory and gives exact results for the frozen core.

We consider the ensemble of all networks of size N and
with fixed parameters �, �, and �. All nodes with a frozen
update function are certainly part of the frozen core. We now
construct the frozen core by determining stepwise all those
nodes that become frozen due to the influence of a frozen
node. In the language of �10�, this process determines the
“clamped” nodes. Initially, we place the nodes in four con-
tainers labeled F, C1, C2, and R. These containers contain Nf,
Nc1

, Nc2
, and Nr nodes initially. Since these numbers change

during our stochastic process, we denote the initial values as
Nf

ini, Nc1

ini, Nc2

ini, and Nr
ini and the total number of nodes as Nini.

We treat the nodes in container C1 as nodes with only one
input and with the update functions “copy” or “invert.” The
contents of the containers will change with time. The “time”
we are defining here is not the real time for the dynamics of
the system. Instead, it is the time scale for a stochastic pro-
cess that we use to determine the frozen core. During one
time step, we remove one node from the container F and
determine all those nodes to which this node is an input. A
node in container C1 chooses this node as an input with prob-
ability 1 /N. It then becomes a frozen node. We therefore
move each node of container C1 with probability 1 /N into the
container F. A node in container C2 chooses the selected
frozen node as an input with probability 2 /N. With probabil-
ity 1 /2, it then becomes frozen, because the frozen node is
with probability 1 /2 in the state that fixes the output of a C2
node. If the C2 node does not become frozen, it becomes a C1
node. We therefore move each node of container C2 during
the first time step with probability 1 /N into the container F
and with probability 1 /N into the container C1. Finally, a
node in container R chooses the selected frozen node as an
input with probability 2 /N and becomes a C1 node. We there-
fore move each node of container R during the first time step
with probability 2 /N into the container C1. In summary, the
total number of nodes, N, decreases by one during one time
step, since we remove one node from container F, and some
nodes move to a different container. The removed nodes are
those frozen nodes for which we already have determined
whose input they are. Then, we take the next frozen node out
of container F and determine its effect on the other nodes.
We repeat this procedure until we cannot continue because
either container F is empty or because all the other contain-
ers are empty. If container F becomes empty, we are left
with the nonfrozen nodes. We shall see below that most of
the remaining nodes are in container C1, with the proportion

TABLE I. The 16 update functions for nodes with 2 inputs. The first column lists the 4 possible states of
the two inputs; the other columns represent one update function each, falling into four classes.

In F C1 C2 R

00 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

01 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1

10 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

11 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0
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of nodes left in containers C2 and R vanishing in the limit
Nini→�. Then, the nonfrozen nodes can be connected to a
network by choosing the input�s� to every node at random
from the other remaining nodes. If all containers apart from
container F are empty at the end, the entire network becomes
frozen. This means that the dynamics of the network go to
the same fixed point for all initial conditions.

Let us first describe this process by deterministic equa-
tions that neglect fluctuations around the average change of
the number of nodes in the different containers. As long as
all containers contain large numbers of nodes, these fluctua-
tions are negligible and the deterministic description is ap-
propriate. The average change of the node numbers in the
containers during one time step is

�Nr = −
2Nr

N
,

�Nc2
= −

2Nc2

N
,

�Nc1
= −

Nc1

N
+

Nc2

N
+

2Nr

N
,

�Nf = − 1 +
Nc1

N
+

Nc2

N
,

�N = − 1. �1�

The number of nodes in the containers, N, can be used in-
stead of the time variable, since it decreases by 1 during each
step. The equation for Nr can then be solved by going from a
difference equation to a differential equation,

�Nr

�N
�

dNr

dN
= −

2Nr

N
,

which has the solution

Nr = N2 Nr
ini

�Nini�2 . �2�

Similarly, we find

Nc2
= N2

Nc2

ini

�Nini�2 ,

Nf = N
Nf

ini − Nr
ini

Nini + N2 Nr
ini

�Nini�2 ,

Nc1
= N

Nc1

ini + Nc2

ini + 2Nr
ini

Nini − N2
Nr

ini + Nc2

ini

�Nini�2 . �3�

For Nf
ini�Nr

ini, we obtain Nf =0 at a nonzero value of N, and
the number of nonfrozen nodes is proportional to Nini. We are
in the chaotic phase. For Nf

ini�Nr
ini, the values Nr and Nc2

will sink below 1 when N becomes of the order �Nini. For
smaller N, there are only F and C1 nodes left, and the second

term contributing to Nf and Nc1
in Eqs. �3� can be neglected

compared to the first one. When Nf falls below 1, there re-
main Nc1

= �Nc1

ini+Nc2

ini+2Nr
ini� / �Nf

ini−Nr
ini� nodes of type C1.

The network is essentially frozen, with only a finite number
of nonfrozen nodes in the limit Nini→�. If we now choose
the inputs for these nodes, we obtain simple loops with trees
rooted in the loops. This property of the frozen phase was
also found in �10�.

For the critical networks that this paper focuses on, we
have Nf

ini=Nr
ini=�Nini, and the stochastic process stops at

Nf =1=�N2 /Nini. This means that

Nend =�Nini

�
. �4�

The number of nonfrozen nodes would scale with the square
root of the network size if the deterministic approximation to
the stochastic process was exact. We shall see below that
including fluctuations changes the exponent from 1/2 to 2/3.
The final number of C2 nodes for the deterministic process
for the critical networks is � /�, which is independent of
network size, and the final number of R nodes vanishes due
to Nr=Nf. We shall see below that the fluctuations change
these two results to a �Nini�1/3 dependence.

Introducing n=N /Nini and nj =Nj /Nini for j=r , f ,c1 ,c2,
Eqs. �3� simplify to �using Nr

ini=Nf
ini�

nr = �n2 = nf ,

nc2
= �n2,

nc1
= n − 2�n2 − �n2.

This means that our stochastic process remains invariant �in
the deterministic approximation� when the initial number of
nodes in the containers and the time unit are all multiplied by
the same factor. For small n, the majority of nodes are in
container C1, since nc1

=n−O�n2�. Now, if we choose a suf-
ficiently large Nini ,n reaches any given small value while
Nf =Nr=�n2Nini is still large enough for a deterministic de-
scription. We can therefore assume that for sufficiently large
networks Nf /N=�n becomes small before the effect of the
noise becomes important. This assumption will simplify our
calculations below.

IV. EFFECT OF FLUCTUATIONS

The number of nodes in container C1 that choose a given
frozen node as an input is Poisson distributed with a mean
Nc1

/N and a variance Nc1
/N. We now assume that n is small

at the moment where noise becomes important—i.e., that the
variance of the noise Nc1

/N=nc1
/n=1− �2�+��n=1−O�n�

is unity. The number of nodes in containers C2 and R that
choose a given frozen node as an input is Poisson distributed
with a mean and a variance 2�Nc2

+Nr� /N. The fluctuation
around the mean can be neglected as this noise term is very
small compared to Nr and Nc2

, the final values of which are
large for sufficiently large Nini. We therefore obtain the sto-
chastic version of Eqs. �1�:
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�Nr = −
2Nr

N
,

�Nc2
= −

2Nc2

N
,

�Nf = −
Nr

N
−

Nf

N
+ 	 ,

�N = − 1. �5�

The random variable 	 has zero mean and unit variance. As
long as the nj change little during one time step, we can
summarize a large number T of time steps into one effective
time step, with the noise becoming Gaussian distributed with
zero mean and variance T. Exactly the same process would
result if we summarized T time steps of a process with
Gaussian noise of unit variance. For this reason, we can
choose the random variable 	 to be Gaussian distributed with
unit variance.

Compared to the deterministic case, the equations for Nr
and Nc2

are unchanged, and we have again Nr

=N2Nr
ini / �Nini�2 and Nc2

=N2Nc2

ini / �Nini�2. Inserting the solution
for Nr into the equation for Nf, we obtain

dNf

dN
=

Nf

N
+

�N

Nini + 	 , �6�

with the step size dN=−1 and �	2�=1. �In the continuum
limit dN→0 the noise correlation becomes �	�N�	�N���
=
�N−N��.� This is a Langevin equation, and we will now
derive the corresponding Fokker-Planck equation. Let
P�Nf ,N� be the probability that there are Nf nodes in con-
tainer F at the moment where there are N nodes in total in
the containers. This probability depends on the initial node
number Nini and on the parameter �. The sum

	
Nf=1

�

P�Nf,N� � 

0

�

P�Nf,N�dNf

is the probability that the stochastic process is not yet
finished—i.e., the probability that Nf has not yet reached the
value 0 at the moment where the total number of nodes in the
containers has decreased to the value N. Since systems that
have reached Nf =0 are removed from the ensemble, we have
to impose the absorbing boundary condition P�0,N�=0. Let
g��Nf �Nf ,N� denote the probability that Nf decreases by
�Nf during the next step, given the values of Nf and N.

We have

P�Nf,N − 1� = 

0

�

P�Nf + �Nf,N�g��Nf�Nf + �Nf,N�d��Nf�

= 

0

� �P�Nf,N�g��Nf�Nf,N�

+
�

�Nf
�P�Nf,N�g��Nf�Nf,N���Nf

+
�2

2�Nf
2 �P�Nf,N�g��Nf�Nf,N����Nf�2

+ ¯ d��Nf�

= P�Nf,N� +
�

�Nf
�P�Nf,N���Nf��

+
�2

2�Nf
2 �P�Nf,N����Nf�2�� + ¯ .

The mean change ��Nf� during one step is ��Nf�=Nf /N
+�N /Nini, and the mean square change is ���Nf�2��1.

This gives the Fokker-Planck equation for our stochastic
process:

−
�P

�N
=

�

�Nf
�Nf

N
+

�N

Nini�P +
1

2

�2P

�Nf
2 . �7�

We introduce the variables

x =
Nf

�N
, y =

N

�Nini/��2/3 �8�

and the function f�x ,y�= �Nini /��1/3P�Nf ,N�. We will see be-
low that f�x ,y� does not depend explicitely on the param-
eters Nini and � with this definition. The Fokker-Planck equa-
tion then becomes

y
�f

�y
+ f + � x

2
+ y3/2� �f

�x
+

1

2

�2f

�x2 = 0. �9�

Let W�N� denote the probability that N nodes are left at the
moment where Nf reaches the value zero. It is

W�N� = 

0

�

P�Nf,N�dNf − 

0

�

P�Nf,N − 1�dNf .

Consequently,

W�N� =
�

�N



0

�

P�Nf,N�dNf

= �Nini/��−1/3 �

�N
�N


0

�

f�x,y�dx

= �Nini/��−2/3 �

�y
�y


0

�

f�x,y�dx

� �Nini/��−2/3G�y� , �10�

with a scaling function G�y�. W�N� must be a normalized
function, �0

�W�N�dN=�0
�G�y�dy=1. This condition is inde-

pendent of the parameters of the model, and therefore G�y�
and f�x ,y� are independent of them, too, which justifies our
choice of the prefactor in the definition of f�x ,y�. By inte-
grating Eq. �9� over x from 0 to infinity and by using
f�0,y�= f�� ,y�=0 we obtain
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�y
�

�y
�y


0

�

fdx −
1

2
� �f

�x
�

x=0
= 0,

which gives us a second relation between f�x ,y� and G�y�:

�yG�y� =
1

2
� �f

�x
�

x=0
. �11�

The mean number of nonfrozen nodes is

N̄ = 

0

�

NW�N�dN = �Nini/��2/3

0

�

G�y�ydy , �12�

which is proportional to �Nini /��2/3. We did not succeed in
extracting an explicit expression for the function G�y�. It can
be determined by running the stochastic process described by
Eqs. �5� on the computer. The result is shown in Fig. 1, and
an almost perfect fit to this result is given by

G�y� � 0.25e−y3/2�1 − 0.5�y + 3y�/�y . �13�

For small y, the data show a power law G�y��y−1/2. We
can obtain this power law analytically by solving the Fokker-
Planck equation �9� in the limit of small y. In this limit, the
term proportional to y3/2 can be dropped, and we have the
simpler equation

y
�f

�y
+ f +

x

2

�f

�x
+

1

2

�2f

�x2 = 0. �14�

The general solution has the form f�x ,y�=	�c�y�f��x�, with
the functions f� satisfying

2�� + 1�f� + xf�� + f�� = 0. �15�

The solution is

ex2/2f��x� = C1H1+2�� x
�2

� + C21F1�− � −
1

2
;
1

2
;
x2

2
� ,

with two constants C1 and C2 and with H denoting the Her-
mitian functions and 1F1 the appropriate hypergeometric
functions. We expect f to be analytical in y for small y,
which means that �=0,1 ,2 , . . .. For sufficiently small y, only
the term �=0 contributes, and due to the absorbing boundary
condition, we have C2=0. We obtain therefore, for small y,

f�x,y� = c0xe−x2/2. �16�

From our numerical result �13�, together with Eq. �11�, we
find c0=0.5. Inserting Eq. �16� into Eq. �10�, we obtain, for
small N,

W�N� = �Nini

�
�−1/3 c0

2�N
. �17�

In Eq. �16�, the function f�x ,y� is independent of y. This
means that for sufficiently small N the function P�Nf ,N� de-
pends only on the ratio Nf /�N. This is also confirmed by our
computer simulations �see Fig. 2�.

We can obtain a set of solutions of Eq. �9� with the ansatz

f�x ,y�=	�y� f̃��z� with z=x−y3/2. The resulting equation for

f̃� is identical to Eq. �15� for f�, which was valid for small y.
However, an analytical expression for the function G�y� can
only be given if an expansion of the initial condition
P�Nf ,N

ini�=
�Nf −�Nini� in terms of known solutions can be
found.

The probability Wr�Nr� that Nr nodes are left in container
R at the moment where container F becomes empty is ob-
tained from the relation

Nr = N2Nr
ini/�Nini�2.

Defining

FIG. 1. The function W�N��Nini /��2/3 vs N / �Nini /��2/3 for �
=0.25 and Nini=216,217,218,219,220,221. Furthermore, the graph
contains a curve with �=0.125, N=216 and a curve with �=0.5,
N=216. The curves all collapse, confirming the existence of a scal-
ing function G�y�. The dashed line is a power law �1/�N.

FIG. 2. P�Nf ,N� vs Nf /�N for Nini=221 and �=1/4 for different
N. The thick solid line is the theoretical result, Eq. �16�, which is
approached in the limit of small N / �Nini�2/3.
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s =
Nr

�Nini/��1/3 = y2

and

F�s� =
G��s�
2�s

, �18�

and remembering W�N�dN=Wr�Nr�dNr, we find

Wr�Nr� = �Nini/��−1/3F�s� . �19�

Figure 3 shows the scaling collapse of the date for Nr. The
mean number of nodes left in container R is

N̄r = 

0

�

Wr�Nr�NrdNr

= �Nini/��1/3

0

�

sF�s�ds

= �Nini/��1/3

0

�

y2G�y�dy . �20�

The number of nodes left in container C2 is Nc2
= �� /��Nr.

We thus have shown that the number of nonfrozen nodes
scales with network size Nini as �Nini�2/3, with most of these
nodes receiving only one input from other nonfrozen nodes.
The number of nonfrozen nodes receiving two inputs from
nonfrozen nodes scales as �Nini�1/3. We have found scaling
functions that describe the probability distribution for these
two types of nodes in the limit of large network size. Our
next task will be to connect these nonfrozen nodes to a net-
work. This is a reduced network, where all frozen nodes have
been cut off.

V. RELEVANT NODES

Let us start from the result obtained from the stochastic
process of the previous two sections. Each time we run this
process we obtain N nonfrozen nodes. Out of these, Nr�Nc2

�
nodes receive input from two other nonfrozen nodes and
have a reversible �canalizing C2� update function. We define
the parameter

a =
Nr + Nc2

�N
= �1 + �/��y3/2, �21�

which has a probability distribution f�a� that is determined
from the condition f�a�da=G�y�dy,

f�a� =
2

3a1/3�1 + �/��2/3G�� a

1 + �/�
�2/3� . �22�

Just as G�y�, the function f�a� is the exact probability distri-
bution only in the thermodynamic limit Nini→�. We deter-
mine the relevant nodes by a stochastic process that removes
iteratively nodes that are not relevant. Each of the N nonfro-
zen nodes chooses its input�s� at random from the nonfrozen
nodes. There are altogether N�1+a /�N� inputs to be chosen,
and consequently the nonfrozen nodes have together N�1
+a /�N� outputs. The number of outputs of a node is Poisson
distributed with the mean value �1+a /�N�. The fraction
exp�−1−a /�N� of nodes have no output. They are the leaves
of the trees of the network of nonfrozen nodes, and we there-
fore know that they are not relevant. We put them in con-
tainer number 1. Their number will change during the sto-
chastic process that determines the relevant nodes. The other
nodes are placed in container number 2. Their number is Nl
�“labeled”�, and it will be reduced until only the relevant
nodes are left. The total number of outputs of the nodes in
container 2 is initially N�1+a /�N�, while their total number
of inputs is N�1+a /�N��1−exp�−1−a /�N��. Now, we re-
move one node from container 1 and connect its input�s� at
random to the outputs of the nodes in container 2. The cho-
sen output�s� are cut off. If a node whose output is cut off has
no other output left, we move the node from container 2 to
container 1. It cannot be a relevant node since relevant nodes
influence other relevant nodes. We iterate this procedure, un-
til there is no node left in container 1. The nodes remaining
in container 2 are the relevant nodes. During the entire pro-
cess, the number of outputs in container 2 is identical to the
number of inputs in container 1 and 2. As long as container 1
is not empty, there are more outputs in container 2 than in-
puts, and only when the process is finished do the two num-
bers become identical. We can therefore simplify the stochas-
tic process by removing container 1 altogether. We simply
have to continue cutting of outputs from nodes in container 2
and removing nodes with no outputs, until the total number
of outputs of the nodes in container 2 has become identical to
their total number of inputs. The remaining nodes are rel-
evant, and we have then Nl

final�Nrel. These nodes can then
be connected to a network by connecting the inputs and out-
puts pairwise.

In order to derive analytical results, it is useful to run this
process backwards. Starting with N nodes with no outputs,

FIG. 3. The function Wr�Nr��Nini /��1/3 vs Nr / �Nini /��2/3 for �
=0.5 and �=0.125 and for Nini=216,217,218,219,220,221. The 12
curves converge with increasing N towards an asymptotic curve,
confirming the existence of an asymptotic scaling function F�s�.
The dashed line shows the function F�s� obtained using the data for
G�y� obtained from the same simulation and Eq. �18�.
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adding outputs at random will eventually generate the Pois-
son distribution of the number of outputs per node that we
have started with. The reverse stochastic process is therefore
defined by the following rule: Begin with an empty container
�former container 2� and N nodes outside the container. Most
of these nodes have one input, and the fraction a /�N have
two inputs. Add an output to a randomly chosen node. Put
this node in the container. Add another output to a randomly
chosen node �choosing every node with equal probability,
whether the node is inside or outside the container�. If a node
from outside the container is chosen, put it in the container.
Eventually, the total number of outputs in the container will
become larger than the total number of inputs in the con-
tainer. The container contains the relevant nodes at the mo-
ment when the inputs equal the outputs for the last time.

In order to show that the number of relevant nodes scales
with �N, we define a scaling variable

t =
Nl

�N
.

During one step, an output is added to nodes that are already
in the container with probability Nl /N. Let No count the
number of outputs that have been added to nodes
in the container—i.e., No= �total number of outputs in the
container�−Nl. Then the average rate of increase of No is
given for sufficiently large N by

� dNo

dNl
� =

Nl

N

or

� dNo

dt
� = t .

Let Ni count the number of nodes in the container with
two inputs. Their rate of increase is

� dNi

dNl
� =

a
�N

or

� dNi

dt
� = a .

Consequently, the probability distribution for No is given by

Po�No�t� =
1

No!
e−t2/2� t2

2
�No

�23�

and the probability distribution for Ni is given by

Pi�Ni�t� =
1

Ni!
e−at�at�Ni. �24�

The stochastic process can be viewed as a random walk
that steps to the right with a rate t and to the left with a rate
a. It is finished when Ni=No for the last time—i.e., when the
walk leaves the origin for the last time. We determined the
probability distribution Ca�t� for this last exit time from the
origin by a computer simulation. It is shown in Fig. 4 for

a=1. For small t, it increases linearly in t, because the prob-
ability of making a step to the right is proportional to t for
small times. For a=0, we can obtain an analytical result from
the relation

C0�t� = −
�Po�0,t�

�t
= te−t2/2. �25�

Since we were able to write the stochastic process in
terms of t and a alone, the probability distribution for the
number of relevant nodes depends only on the combination
Nrel /�N and on the parameter a,

pa�Nrel�dNrel = Ca�Nrel/�N�dNrel/�N . �26�

The relation between N and a is obtained using Eqs. �8� and
�21�:

�N = a1/3� Nini

� + �
�1/3

.

Taking into account the probability distribution �22� of the
parameter a, we obtain the scaling behavior of the number of
relevant nodes,

p�Nrel� = 

0

�

daf�a�Ca� Nrela
−1/3

�Nini/�� + ���1/3��� + �

aNini �1/3

.

�27�

The error made by taking the upper limit of the integral to
infinity vanishes for Nini→�. We introduce the scaling vari-
able

z =
Nrel

� Nini

� + �
�1/3 , �28�

which has then the probability distribution

P�z� = 

0

�

da
f�a�
a1/3 Ca� z

a1/3� . �29�

The probability distribution for the number of relevant nodes
depends for large Nini only on the scaling variable z. We
determined numerically the function P�z� by combining the

FIG. 4. The function C1�t� as obtained by running the stochastic
process described in this section. The dotted line corresponds to the
function 0.25t, which is a good fit to C1�t� for small t.
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two stochastic processes described in this paper. First, we
determined a value of a using the process of Sec. IV. Then,
we used this value of a to determine the last exit time of the
stochastic process of this section, giving a value of z. The
shape of the curves P�z� depends on the value of � /�, and
the results are shown in Fig. 5 for � /�=0 and � /�=4, which
is the original Kauffman model, where each update function
has the same weight. It is easy to check analytically that

lim
z→0

P�z� = �2/4�1 + �/��1/3.

The mean number of relevant nodes is

N̄rel = 

0

�

Nrelp�Nrel�dNrel = � Nini

� + �
�1/3


0

�

zP�z�dz;

�30�

i.e., it is proportional to �Nini�1/3. Finally, let us give the prob-
ability distribution for the number of relevant nodes with two
relevant inputs. Let m denote the number of relevant nodes

with two relevant inputs and P̃�m ;z�dz the probability of
having the number of relevant nodes in the interval
�Nrel�z� ,Nrel�z+dz��, with m of them having two relevant in-

puts. Using Eqs. �23� and �24�, we can express P̃ as

P̃�m;z� = 

0

�

da
f�a�
a1/3 Ca� z

a1/3� Po�m�za−1/3�Pi�m�za−1/3�

	l
Po�l�za−1/3�Pi�l�za−1/3�

.

�31�

As Po and Pi decay exponentially fast with increasing m, the
mean number of relevant nodes with two inputs is finite.

VI. CONCLUSIONS

In this paper, we have obtained the asymptotic probability
distributions in the limit of large network size for the number
of nonfrozen nodes, the number of nonfrozen nodes with two
nonfrozen inputs, the number of relevant nodes, and the
number of relevant nodes with two relevant inputs. The mean
values of these quantities scale with network size Nini as a
power law in Nini, with the exponent being 2/3, 1 /3, 1 /3,

and 0 respectively. The implications of the results are mani-
fold.

First, the notion that these networks are “critical” is now
corroborated by the existence of power laws and scaling
functions. Originally, it was expected that the quantities that
display the scaling behavior should be the attractors of the
network �2�. In the meantime, it has become clear that mean
attractor numbers do not obey power laws �11�. It is the
number of nonfrozen and relevant nodes that show scaling
behavior.

Next, let us compare the results to those of critical K=1
networks. A K=1 critical network with N nodes corresponds
to the nonfrozen part of a critical K=2 network for a=0. In
this case, the probability distribution of the number of rel-
evant nodes is given by Eq. �26� with a=0,

p0�Nrel� =
1

�N
C0�Nrel

�N
� =

Nrel

N
e−Nrel

2 /2N. �32�

The mean number of relevant nodes is proportional to �N.
When these relevant nodes are connected to a network by
pairwise connecting the inputs and outputs, one obtains a set
of simple loops. From �13�, we know that there is a mean
number of ln �N loops and that the number of loops of length
l in a critical K=1 network is Poisson distributed with a
mean 1/ l for l��N. This can be easily explained by consid-
ering the process of connecting inputs and outputs: We begin
with a given node and draw the node that provides its input
from all possible nodes. Then, we draw the node that pro-
vides the input to the newly chosen node, etc., until the first
node is chosen and a loop is formed. For small loop size, the
probability that the loop is closed after the addition of the lth
node is 1 /Nrel. Therefore, the probability that a given node is
on a loop of size l is 1 /Nrel, the mean number of nodes on
loops of size l is 1, and the number of loops of length l is
Poisson distributed with a mean 1/ l for sufficiently small l.

Now, the K=2 critical networks have of the order of
�Nini�1/3 relevant nodes, with only a finite number of them
having two relevant inputs. The relevant components are
constructed from the relevant nodes by pairwise connecting
inputs and outputs. In the asymptotic limit of very large Nini

that we are considering, the probability that a randomly cho-
sen relevant node has two inputs or two outputs vanishes. Let
us again construct a component by starting with one node
and choosing its input node, etc., until the component is fin-
ished. If the component is small, it consists almost certainly
only of nodes with one input and one output and is therefore
a simple loop. There is no difference between the statistics of
the small relevant components of a K=1 critical network,
and the number of loops of length l is Poisson distributed
with a mean 1/ l. The total number of relevant nodes in loops
of size l� lc with lc=��Nini�1/3 �with a small �� is lc, and it is
a small proportion of all nodes. If there were no nodes with
two inputs or outputs, the number of components larger than
lc would be �ln Nrel−ln lc�=ln�1/��. The additional links may
reduce this number, which is in any case finite. Since these
large components contain almost all nodes, they contain al-
most all relevant nodes with two inputs or outputs.

FIG. 5. The function P�z� for � /�=0 �solid line� and � /�=4
�dashed line�. The results were obtained by running the two coupled
stochastic processes for 107 samples.
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From these findings, we can obtain results for the attrac-
tors of K=2 critical networks. The numbers and lengths of
attractors are determined by the relevant components. We
now argue that the mean number and length of attractors
increases faster than any power law. If we remove the com-
ponents of size larger than lc and determine the mean number
and length of attractors for this reduced relevant network, we
have a lower bound to the correct numbers. Now, the reduced
relevant network of a K=2 system is identical to that of a
critical K=1 system �where the critical loop size is lc=��N�.
In �13�, it was proven that the mean number and length of
attractors for such a reduced K=1 system increases faster
than any power law with network size. We therefore con-

clude that the same is true for critical K=2 networks.
Earlier, Samuelsson and Troein �11� derived analytically

an exact expression for the number of attractors of length L
of a critical K=2 network in the limit of large Nini, and they
pointed out that this implies that the mean number of attrac-
tors increases faster than any power law with Nini. Using
their calculation, it has recently been shown �12� that there is
a close relationship between K=1 critical networks and the
nonfrozen part of K=2 critical networks and that the results
of �11� can be most naturally interpreted if the relevant com-
ponents of these two networks look identical for component
sizes below the above-given cutoffs. This interpretation is
placed on a firm foundation by the present paper.
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